Morphological Control of Polymer Spherulites via Manipulating Radial Lamellar Organization upon Evaporative Crystallization: A Mini Review
نویسندگان
چکیده
Various spherulites or spherulitic crystals are widely encountered in polymeric materials when crystallized from viscous melts or concentrated solutions. However, the microstructures and growth processes are quite complicated and remain unclear and, thus, the formation mechanisms are rather elusive. Here, diverse kinds of spherulitic growths and patterns of typical polyesters via evaporative crystallization of solution-cast thin films are delineated after detailed investigating the microstructures and in situ following the developing processes. The spherulitic crystals produced under different evaporation conditions reflect variously optical features, such as the usual Maltese Cross, non-birefringent or half-birefringent concentric-rings, extinction spiral banding, and even a nested ring-banded pattern. Polymer spherulites are composed of stacks of radial fibrillar lamellae, and the diversity of bewitchingly spherulitic morphologies is dominated by the arrangement and organization of radial lamellae, which is predicted to be tunable by modulating the evaporative crystallization processes. The emergence of various types of spherulitic morphologies of the same polymer is attributed to a precise manipulation of the radial lamellar organization by a coupling of structural features and specific crystal evolving courses under confined evaporation environments. The present findings improve dramatically the understanding of the structural development and crystallization mechanism for emergence of diverse polymer spherulitic morphologies.
منابع مشابه
Organization of Twisting Lamellar Crystals in Birefringent Banded Polymer Spherulites: A Mini-Review
In this mini-review, we summarize the evidences of lamellar twisting in the birefringent banded polymer spherulites demonstrated by various characterization techniques, such as polarized optical microscopy, real-time atomic force microscopy, micro-focus wide angle X-ray diffraction, etc. The real-time observation of lamellar growth under atomic force microscopy unveiled the fine details of lame...
متن کاملInterior Lamellar Assembly and Optical Birefringence in Poly(trimethylene terephthalate) Spherulites: Mechanisms from Past to Present
Poly(trimethylene terephthalate) (PTT) with its unique spherulitic morphologies, highly birefringent features, and crystal stability serves as a good candidate to study polymer crystallization and assembly. This review compiles the main findings on crystallization in PTT, including birefringence and morphology, thermal behavior, as well as the interior structure of PTT banded spherulites, in or...
متن کاملSpiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.
In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack ...
متن کاملSimultaneous crystalline-amorphous phase evolution during crystallization of polymer systems
– Despite the fact that polymer crystallization has been the object of intense research, this process is far from being fully understood. Traditional polymer crystallization studies using X-ray scattering techniques mainly provide information about the ordered regions. To obtain a more complete information about the time evolution of both the crystalline and the amorphous phase during polymer c...
متن کاملCracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands
This article reviews possible mechanisms of various crack forms and their likely correlations with interior crystal lamellae and discontinuous interfaces in spherulites. Complex yet periodically repetitive patterns of cracks in spherulites are beyond attributions via differences in thermal expansion coefficients, which would cause random and irregular cracks in the contract direction only. Crac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017